

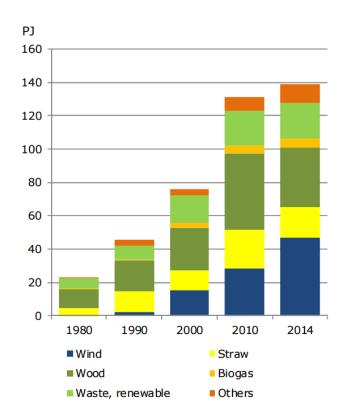
Ukraine-Denmark Energy Center

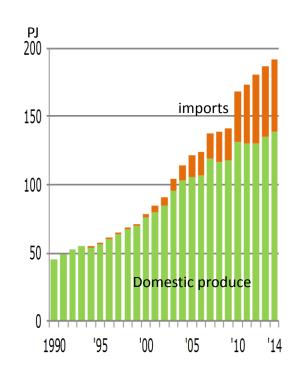
Biomass for power and heat generation in Denmark
Vinnitsya
21 October 2016

Government cooperation on strategic energy planning between

Ukraine and Denmark

The race for biomass in Denmark

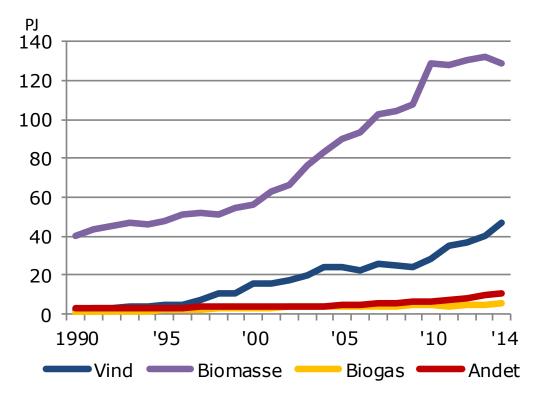

- These years biomass to replace natural gas and coal is very popular in Denmark
 - The main reason is that coal and gas for heat production is taxed a policy incentive
 - Fossil fuel is cheaper than biomass, BUT
 - Fossil fuel used for heating is heavily taxed, biomass is not
 - Fossil fuel + tax is more expensive than biomass


3 markets:

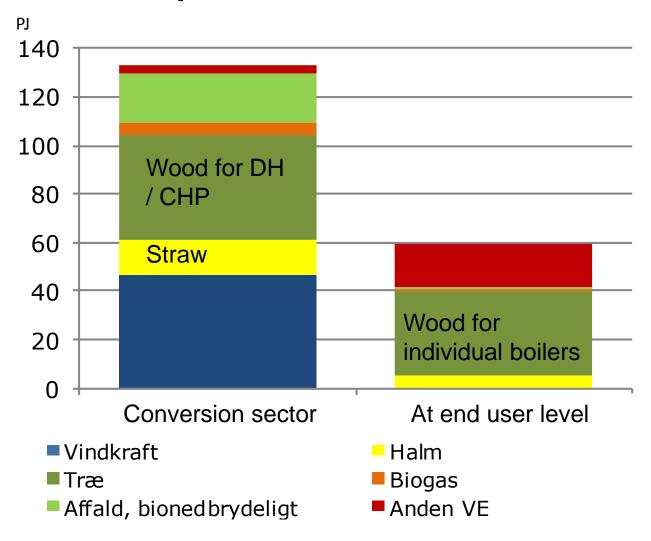
- 1. Large scale power generation is not feasible today power price is low
- 2. Small scale generation units near end of designed lifetime
- 3. Individual heating based on biomass is much cheaper
- This presentation focus on
 - Biomass in the Danish energy mix
 - Recent significant conversion projects

Biomass in Denmark

Renewable energy production by type



Production 140 PJ + Imports 55 PJ (mainly wood pellets for large CHP plants)
Renewables cover **27** % **of total demand** – of which biomass 18 %


Renewables in Denmark

is not only wind!

Denmark is world famous for large share of wind, but use of biomass is nearly 3 times higher

Consumption of Renewables 2014

Rationale behind investments

- Investments in energy sector are big and lasts many years
- Danish regulation enables coverage of investment in tariff and
- Depreciation over lifetime of technology
- Investment decisions in biomass based heat production are based on lifetime cost analysis and relies on exception of taxation for biomass
- These calculations shows conversion to biomass or replacement with new biomass plant is cheapest

Examples of projects

- 1. Conversion of large-scale coal fired CHP
- 2. Conversion of large-scale gas fired CHP
- New medium-scale biomass CHP
- 4. Small scale boilers

Studstrup 3

- 350 MWe, 450 MW DH extraction unit, baseload power plant and utilized cooling water to cover 80% of district heat to 2nd largest city Aarhus
- 1984: Built as coalfired unit design lifetime 30 years. 1.3 mio. tons coal/year
- 1995: Refurbished with deNOx and desulphur equipment
- 2016: 15 year lifetime extension and wood pellets equipment, total investment 175m EUR
- 20% of lifetime extension and 80% of biomass equipment financed by heat company
- New operational regime: mainly following district heat demand as back pressure power generation on coal only as backup for power system
- Expected consumption 800,000 tons pellets and 140,000 tons coal

Before conversion

First shipload of pellets September 2016

Skaerbaek 3

- 420 MWe, 440 MW DH extraction unit
- 1998: Built as natural gas fired unit
- Low in merit order due to expensive fuel and low value as power generation asset
- 2014-2017 new separate boiler for wood chips and fuel handling equipment, total investment 240m EUR
- NG boiler fully operational as reserve, Biomass boiler to supply steam for existing CHP capacity on biomass is 90 MWe and 320 MW DH capacity
- Same operational regime: supplying district heat as back pressure power capacity on natural gas still to be offered as peak load for the power system
- Expected consumption 500,000 tonnes chips only limited NG

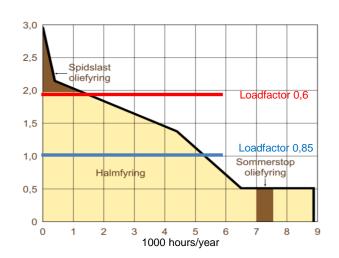
Visualisation of storage and new boiler

Start of construction 2015

Hillerød - new CHP

- Built for supply of district heat
- 1991: Medium scale CHP natural gas, 71 MWe, 78 MW
 DH. 80 mio m3 NG/year
- Weak economy due to expensive fuel and fuel tax
- 2014-2017 new CHP plant based on wood chips, total investment 25m EUR
- 4 MWe & 25 MW DH will supply 50% of DH demand
- Existing NG CHP still to supply DH during peak load

Visualization of new bio CHP



Existing NG CHP

Small scale biomass boilers

- These years all investments in small scale district heating is about biomass, in particular chips
- Approximately 250 small gas engines CHP plants built in the 1990'ies
- Typical size 1-10 MWe and 2-20 MW DH
- Low to average utilization load factor ~ 0,6
- End of the 20-25 year lifetime is near
- Power generation no longer feasible
- Minimum 100 new projects or proposals for biomass
- New smaller biomass boilers with higher load factor
- Very popular due to reduction in consumer prices!

RØGGASKONDENSERING

MØRKØV VARMEVÆRK - NY 1 MW BIOMASSEKEDEI

decentrale kraftvarmeværker, der har fået mulighed for at etablere en 1 MW

Biomassekedelcentralen placeres ved eksisterende kraftva

Vestervig Fjernvarme A.m.b.a. har etableret et nyt fliskedelanlæg på 3,5 MW inkl. røggaskondensering. Fliskedelanlægget er etableret i ny

biomassekedel.

about recent projects News